Abstract
A novel fuzzy carbon fiber heat exchanger (FFHE) is proposed in this study. The novel constructional feature of the FFHE is that the sinusoidally wavy carbon nanotubes (CNTs) are radially grown on the outer circumferential surface of the hollow cylindrical carbon fiber (HCF) heat exchanger. The effective thermal conductivities of the FFHE have been estimated by employing the method of cells (MOC) approach and the effective medium (EM) approach. The present study reveals that if the amplitudes of the radially grown sinusoidally wavy CNTs are parallel to the axis of the HCF then the effective axial thermal conductivity of the FFHE is significantly improved over that of the bare HCF heat exchanger (i.e., without CNTs). On the other hand, if the amplitudes of the radially grown wavy CNTs are transverse to the axis of the HCF, the effective transverse thermal conductivity of the FFHE is significantly improved over that of the bare HCF heat exchanger. It is also found that the CNT/polymer matrix interfacial thermal resistance does not affect the effective thermal conductivities of the FFHE. The present investigation suggests that exploiting the waviness of radially grown CNTs on the HCF a truly multifunctional and promising heat exchanger can be developed for advanced technological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.