Abstract

In this article, we investigate effective sketching schemes via sparsification for high dimensional multilinear arrays or tensors. More specifically, we propose a novel tensor sparsification algorithm that retains a subset of the entries of a tensor in a judicious way, and prove that it can attain a given level of approximation accuracy in terms of tensor spectral norm with a much smaller sample complexity when compared with existing approaches. In particular, we show that for a <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> th order <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ {d}\times \cdots \times {d}$ </tex-math></inline-formula> cubic tensor of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">stable rank</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ {r}_{ {s}}$ </tex-math></inline-formula> , the sample size requirement for achieving a relative error <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\varepsilon $ </tex-math></inline-formula> is, up to a logarithmic factor, of the order <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ {r}_{ {s}}^{1/2} {d}^{ {k}/2} /\varepsilon $ </tex-math></inline-formula> when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\varepsilon $ </tex-math></inline-formula> is relatively large, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ {r}_{ {s}} {d} /\varepsilon ^{2}$ </tex-math></inline-formula> and essentially optimal when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\varepsilon $ </tex-math></inline-formula> is sufficiently small. It is especially noteworthy that the sample size requirement for achieving a high accuracy is of an order independent of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> . To further demonstrate the utility of our techniques, we also study how higher order singular value decomposition (HOSVD) of large tensors can be efficiently approximated via sparsification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.