Abstract

We study numerically correlation and response functions in nonequilibrium driven vortex lattices with random pinning. From a generalized fluctuation-dissipation relation, we calculate an effective transverse temperature in the fluid moving phase. We find that the effective temperature decreases with increasing driving force and becomes equal to the equilibrium melting temperature when the dynamic transverse freezing occurs. We also discuss how the effective temperature can be measured experimentally from a generalized Kubo formula.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call