Abstract

The III-V nanowire (NW) structure is a good candidate for developing photodetectors. However, high-density surface states caused by the large surface-to-volume ratio severely limit their performance, which is difficult to solve in conventional ways. Here, a robust surface passivation method, using a thin layer of ZnO capping, is developed for promoting NW photodetector performance. 11 cycles of ZnO, grown on pure zinc blende high-quality GaAs NWs by atomic layer deposition, significantly alleviates the undesirable effect of the surface states, without noticeable degradation in NW morphology. An average 20-fold increase in micro-photoluminescence intensity is observed for passivated NWs, which leads to the development of detectors with high responsivity, specific detectivity, and optical gain of 9.46 × 105 A W-1, 3.93 × 1014 Jones, and 2.2 × 108 %, respectively, under low-intensity 532 nm illumination. Passivated NW detectors outperform their counterparts treated by conventional methods, so far as we know, which shows the potential and effectiveness of thin ZnO surface passivation on NW devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.