Abstract

Metasurfaces offer great potential to control near- and far-fields through engineering optical properties of elementary cells or meta-atoms. Such perspective opens a route to efficient manipulation of the optical signals both at nanoscale and in photonics applications. In this paper we show that a local surface conductivity tensor well describes optical properties of a resonant plasmonic hyperbolic metasurface both in the far-field and in the near-field regimes, where spatial dispersion usually plays a crucial role. We retrieve the effective surface conductivity tensor from the comparative analysis of experimental and numerical reflectance spectra of a metasurface composed of elliptical gold nanoparticles. Afterwards, the restored conductivities are validated by semi-analytic parameters obtained with the nonlocal discrete dipole model with and without interaction contribution between meta-atoms. The effective parameters are further used for the dispersion analysis of surface plasmons localized at the metasurface. The obtained effective conductivity describes correctly the dispersion law of both quasi-TE and quasi-TM plasmons in a wide range of optical frequencies as well as the peculiarities of their propagation regimes, in particular, topological transition from the elliptical to hyperbolic regime with eligible accuracy. The analysis in question offers a simple practical way to describe properties of metasurfaces including ones in the near-field zone with effective conductivity tensor extracting from the convenient far-field characterization.

Highlights

  • Metasurfaces offer great potential to control near- and far-fields through engineering optical properties of elementary cells or meta-atoms

  • In this paper we show that a local surface conductivity tensor well describes optical properties of a resonant plasmonic hyperbolic metasurface both in the far-field and in the near-field regimes, where spatial dispersion usually plays a crucial role

  • We reveal that the effective surface conductivity tensor extracted from the far-field measurements well describes near-field properties of metasurface such as the spectrum of surface waves and their behaviour in all possible regimes - capacitive, inductive, and hyperbolic

Read more

Summary

Sample Design and Fabrication

We consider a metasurface composed of gold anisotropic nanoparticles placed on a fused silica substrate. The sample was fabricated via electron beam lithography on a fused silica substrate. Before the electron beam exposure process, the resist layer (PMMA) was covered with a thin gold layer to prevent local charge accumulation. During the last step of the fabrication process, the remains of the resist were removed via the lift-off procedure. The sample was immersed in a liquid with a refractive index nearly matching the glass substrate.

Effective Conductivity Tensor
Surface Waves
Conclusions
Author Contributions
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.