Abstract

Cation segregation on cathode surfaces plays a key role in determining the activity and operational stability of solid oxide fuel cells (SOFCs). The double perovskite oxide PrBa0.8Ca0.2Co2O5+δ (PBCC) has been widely studied as an active cathode but still suffer from serious detrimental segregations. To enhance the cathode stability, a PBCC derived A-site medium-entropy Pr0.6La0.1Nd0.1Sm0.1Gd0.1Ba0.8Ca0.2Co2O5+δ (ME-PBCC) oxide was prepared and its segregation behaviors were investigated under different conditions. Compared with initial PBCC oxide, the segregations of BaO and Co3O4 on the surface of ME-PBCC material are significantly suppressed, especially for Co3O4, which is attributed to its higher configuration entropy. Our results also confirm the improved electrochemical performance and structural stability of ME-PBCC material, enabling it as a promising cathode for SOFCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.