Abstract

Genome-wide expression quantitative trait loci (eQTLs) mapping explores the relationship between gene expression and DNA variants, such as single-nucleotide polymorphism (SNPs), to understand genetic basis of human diseases. Due to the large number of genes and SNPs that need to be assessed, current methods for eQTL mapping often suffer from low detection power, especially for identifying trans-eQTLs. In this paper, we propose the idea of performing SNP ranking based on the higher criticism statistic, a summary statistic developed in large-scale signal detection. We illustrate how the HC-based SNP ranking can effectively prioritize eQTL signals over noise, greatly reduce the burden of joint modeling, and improve the power for eQTL mapping. Numerical results in simulation studies demonstrate the superior performance of our method compared to existing methods. The proposed method is also evaluated in HapMap eQTL data analysis and the results are compared to a database of known eQTLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call