Abstract
A super-hydrophobic array of grooves containing trapped gas (stripes) has the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused on idealized cases of stick-perfect slip stripes. Here, we analyse the experimentally more relevant situation of a pressure-driven flow past striped slip-stick surfaces with arbitrary local slip at the gas sectors. We derive approximate formulas for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that are in a good agreement with the exact numerical solution for any surface slip fraction. By representing eigenvalues of the slip length tensor, we obtain the effective slip for any orientation of stripes with respect to the mean flow. Our results imply that flow past stripes is controlled by the ratio of the local slip length to texture size. In the case of a large (compared to the texture period) slip at the gas areas, surface anisotropy leads to a tensorial effective slip, by attaining the values predicted earlier for a perfect local slip. Both effective slip lengths and anisotropy of the flow decrease when local slip becomes of the order of texture period. In the case of a small slip, we predict simple surface-averaged isotropic flows (independent of orientation).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.