Abstract

We propose a new method for effective numerical simulation of transmission system performance and study of correlated noise evolution along an optical fiber with nonlinear parametric interaction between the amplified spontaneous emission (ASE) and the modulated optical signal. The method is based on an evaluation of the noise covariance matrix by using full nonlinear Schrödinger equation (NLSE) and an analytical model for the optical receiver. Using extensive brute-force Monte Carlo simulation as a verification tool, we test the accuracy of the method and illustrate the analytical receiver model limitations in the case of moderate as well as substantial growth of non-Gaussian optical noise along the optical fiber transmission link.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.