Abstract
Functional near-infrared spectroscopy (fNIRS) can dynamically respond to the relevant state of brain activity based on the hemodynamic information of brain tissue. The cerebral cortex and gray matter are the main regions reflecting brain activity. As they are far from the scalp surface, the accuracy of brain activity detection will be significantly affected by a series of physiological activities. In this paper, an effective algorithm for extracting brain activity information is designed based on the measurement method of dual detectors so as to obtain real brain activity information. The principle of this algorithm is to take the measurement results of short-distance channels as reference signals to eliminate the physiological interference information in the measurement results of long-distance channels. In this paper, the performance of the proposed method is tested using both simulated and measured signals and compared with the extraction results of EEMD-RLS, RLS and fast-ICA, and their extraction effects are quantified by correlation coefficient (R), root-mean-square error (RMSE), and mean absolute error (MAE). The test results show that even under low SNR conditions, the proposed method can still effectively suppress physiological interference and improve the detection accuracy of brain activity signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.