Abstract

Beam deflections in cases of diagonal and bending cracking of reinforced concrete (RC) beams can be attributed equally to shear and flexural deformations. However, the extent of contribution by shear deformation is hard to quantify and is often underestimated in practical design. To address this, a quantitative analysis of the effect of shear deformation was conducted, considering the effect of tension stiffening after diagonal cracking, and a formula to derive effective shear stiffness is proposed. Five RC beams, comprising of three RC T-section beams with thin web and two RC rectangular beams, were tested to verify the theoretical models with minimum crack angle and total deflection as key points of comparison. The fully cracked responses were analyzed using truss model analogies while exact models applied depended on the crack angle. Results show that shear contribution to the total deflection in the diagonally cracked RC beam is significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.