Abstract

This work discusses procedures used to determine effective shear area of ship sections. Five types of ships have been studied. Initially, the vertical natural frequencies of an acrylic scale model 3m in length in a laboratory at university are obtained from experimental tests and from a three dimensional numerical model, and are compared to those calculated from a one dimensional model which the effective shear area was calculated by a practical computational method based on thin-walled section Shear Flow Theory. The second studied ship was a ship employed in midshipmen training. Two models were made to complement some studies and vibration measurements made for those ships in the end of 1980 decade when some vibration problems in them were solved as a result of that effort. Comparisons were made between natural frequencies obtained experimentally, numerically from a three dimensional finite element model and from a one dimensional model in which effective shear area is considered. The third and fourth were, respectively, a tanker ship and an AHTS (Anchor Handling Tug Supply) boat, both with comparison between three and one dimensional models results out of water. Experimental tests had been performed in these two ships and their results were used in other comparison made after the inclusion of another important effect that acts simultaneously: the added mass. Finally, natural frequencies experimental and numerical results of a barge are presented. The natural frequencies numerical results of vertical hull vibration obtained from these approximations of effective shear areas for the five ships are finally discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call