Abstract

We consider to solve numerically the shape optimization models with Dirichlet Laplace eigenvalues. Both volume-constrained and volume unconstrained formulations of the model problems are presented. Different from the literature using boundary-type Eulerian derivatives in shape gradient descent methods, we advocate to use the more general volume expressions of Eulerian derivatives. We present two shape gradient descent algorithms based on the volume expressions. Numerical examples are presented to show the more effectiveness of the algorithms than those based on the boundary expressions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call