Abstract

Carbohydrate purification remains problematic due to the intrinsic diversity of structural isomers present in nature. Although liquid chromatography-based techniques are suitable for analyzing or preparing most glycan structures acquired either from natural sources or through chemical or enzymatic synthesis, the separation of regioisomers or linkage isomers with a clear resolution remains challenging. Herein, a carbon dioxide supercritical fluid chromatography (SFC) method was devised to resolve 18 human milk glycosides: oligomers (disaccharides to hexasaccharides), fucosylated regioisomers (lacto-N-fucopentaose I, III, and V; lacto-N-neofucopentaose V; lacto-N-difucohexaose III; blood group H1 antigen; and TF-LNnT), and connectivity isomers (lacto-N-tetraose/lacto-N-neotetraose and para-lacto-N-hexaose/para-lacto-N-neohexaose/type-1 hexasaccharide). The analysis of these glycosides represents a major limitation associated with conventional carbohydrate analysis. The unprecedented resolution achieved by the SFC method indicates the suitability of this key technology for revealing complex human milk glycomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.