Abstract
Most existing studies on selling strategies in online auctions do not distinguish auction heterogeneity when providing operational selling recommendations. They also tend to assume single objective for sellers. In this study, we incorporate seller and product heterogeneity into our analytical framework and implement data mining analysis in four auction segments. We use classification and regression tree (CART) to identify the critical factors along with their sequences for auction success and prices. We find different determinants for auction success and ending prices in these four auction segments. The classification and regression trees provide operational choices for sellers to build the most effective selling strategies. We propose that, by using expected auction prices with the classification and regression trees, sellers can integrate auction success and prices as multiple objectives in their selling strategies. Overall, this study contributes to the literature by providing an innovative methodology for effective selling recommendations, which can potentially lead to significant and smooth growth of the online auction market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Business Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.