Abstract

A novel and effective self-calibration approach for robot vision is presented, which can effectively estimate both the camera intrinsic parameters and the hand-eye transformation at the same time. The proposed calibration procedure is based on two arbitrary feature points of the environment, and three pure translational motions and two rotational motions of robot endeffector are needed. New linear solution equations are deduced, and the calibration parameters are finally solved accurately and effectively. The proposed algorithm has been verified by simulated data with different noise and disturbance. Because of the need of fewer feature points and robot motions, the proposed method greatly improves the efficiency and practicality of the calibration procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.