Abstract

Significant reduction in mechanical properties, i.e., elastic moduli and seismic wave velocities, as well as enhanced inelastic attenuation is often associated with areas of partially molten rocks. In this paper we suggest a new mechanism responsible for significant reduction of wave velocity and enhanced attenuation. The suggested mechanism considers solid-melt phase transition at thermodynamic equilibrium. Any pressure change, that takes the system out of thermodynamic equilibrium, causes solidification or melting which modifies the heat balance according to the Clausius-Clapeyron equation. The latent heat (sink or source) is transferred away or towards the interface by conductive-advective mechanism, heating or cooling the entire rock mass, and leading to energy loss and dissipation of the mechanical energy and to seismic wave attenuation. We use simplified geometry and derive analytical solutions for wave velocity reduction and attenuation associated with a moving solid-melt interface (Stefan problem). We demonstrate that the latent heat generation due to wave-induced pressure oscillations around thermodynamic equilibrium is an efficient mechanism for energy dissipation and leads to significant reduction in mechanical properties (seismic velocities and attenuation). The highest attenuation occurs when the period of oscillation is close to the heat transfer time-scale associated with the size of melt inclusions. The predicted values are approximately in agreement with large scale seismological observations, showing that seismic waves are mostly attenuated within the shallow parts of Earth's crust and mantle, and are associated with possible presence of melt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.