Abstract

AbstractSilicon, as potential next‐generation anode material for high‐energy lithium‐ion batteries (LIBs), suffers from substantial volume changes during (dis)charging, resulting in continuous breakage and (re‐)formation of the solid electrolyte interphase (SEI), as well as from consumption of electrolyte and active lithium, which negatively impacts long‐term performance and prevents silicon‐rich anodes from practical application. In this work, fluorinated phosphazene compounds are investigated as electrolyte additives concerning their SEI‐forming ability for boosting the performance of silicon oxide (SiOx)‐based LIB cells. In detail, the electrochemical performance of NCM523 || SiOx/C pouch cells is studied, in combination with analyses regarding gas evolution properties, post‐mortem morphological changes of the anode electrode and the SEI, as well as possible electrolyte degradation. Introducing the dual‐additive approach in state‐of‐the‐art electrolytes leads to synergistic effects between fluoroethylene carbonate and hexafluorocyclotriphosphazene‐derivatives (HFPN), as well as enhanced electrochemical performance. The formation of a more effective SEI and increased electrolyte stabilization improves lifetime and results in an overall lower cell impedance. Furthermore, gas chromatography‐mass spectrometry measurements of the aged electrolyte with HFPN‐derivatives as an additive compound show suppressed ethylene carbonate and ethyl methyl carbonate decomposition, as well as reduced trans‐esterification and oligomerization products in the aged electrolyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.