Abstract

Our proposed research technique intends to provide an effective liver magnetic resonance imaging (MRI) and computed tomography (CT) scan image classification which would play a significant role in medical dataset especially in feature selection and classification. There are a number of existing research works classifying the liver tumor disease. Early detection of liver tumor will help the patients to get cured rapidly. Our proposed research focuses on the classification of medical images with respect to the classification technique artificial neural network (ANN) to classify an image as normal or abnormal. In the pre-processing step, the input image is selected from the database and adaptive median filtering is used for noise removal. For better enhancement, histogram equalization (HE) is done in the noise-removed images. In the pre-processed images, the texture feature such as gray-level co-occurrence matrix (GLCM) and statistical features are extracted. From the extensive feature set, optimal features are selected using the optimal kernel K-means (OKK-means) clustering algorithm along with the oppositional firefly algorithm (OFA). The proposed method obtained 97.5% accuracy in the classification when compared to the existing method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.