Abstract

In this work, a self-consistent model has been used to estimate the effective secondary electron emission coefficient (γE) of the cathode in typical abnormal dc glow discharge conditions. Using this model, the value of γE has been obtained for tungsten (W), copper (Cu), and stainless steel (SS304) cathode samples for argon (Ar) and nitrogen (N2) discharges. The γE for W is lower than the Cu cathode under identical operating conditions. The results show possible dependence of γE on the Fermi energy of the cathode material since it influences the probability of electron to be emitted by the incident ion. In addition to this, we found, significant contribution of cathode directed species other than ion to γE. Further, the effect of pressure on γE for the N2 discharge has been investigated in the pressure range of 0.5 mbar to 2.0 mbar and its value increases from 0.38 to 0.47 with pressure for the SS304 cathode. The knowledge of γE successfully explains the governing processes in abnormal glow discharge plasma that cannot be explained by the value of the ion induced secondary electron emission coefficient γi. The measurement of the γE value of the cathode material in typical abnormal glow discharge plasma conditions presents possibilities of exciting advancement in various applications by accurate estimation of discharge characteristics including flux of species, fraction of power carried by ions and electrons, plasma density, discharge current density, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call