Abstract

Natural products are an excellent source of skeletons for medicinal seeds. Triterpenes and saponins are representative natural products that exhibit anti-herpes simplex virus type 1 (HSV-1) activity. However, there has been a lack of comprehensive information on the anti-HSV-1 activity of triterpenes. Therefore, expanding information on the anti-HSV-1 activity of triterpenes and improving the efficiency of their exploration are urgently required. To improve the efficiency of the development of anti-HSV-1 active compounds, we constructed a predictive model for the anti-HSV-1 activity of triterpenes by using the information obtained from previous studies using machine learning methods. In this study, we constructed a binary classification model (i.e., active or inactive) using a logistic regression algorithm. As a result of the evaluation of predictive model, the accuracy for the test data is 0.79, and the area under the curve (AUC) is 0.86. Additionally, to enrich the information on the anti-HSV-1 activity of triterpenes, a plaque reduction assay was performed on 20 triterpenes. As a result, chikusetsusaponin IVa (11: IC50 = 13.06 μM) was found to have potent anti-HSV-1 with three potentially anti-HSV-1 active triterpenes. The assay result was further used for external validation of predictive model. The prediction of the test compounds in the activity test showed a high accuracy (0.83) and AUC (0.81). We also found that this predictive model was found to be able to successfully narrow down the active compounds. This study provides more information on the anti-HSV-1 activity of triterpenes. Moreover, the predictive model can improve the efficiency of the development of active triterpenes by integrating many previous studies to clarify potential relationships.

Highlights

  • IntroductionAccording to a report from the World Health Organization, herpes simplex virus type 1 (HSV-1) has been widespread and estimated to have infected 3.7 billion people globally (World Health Organization, 2020)

  • herpes simplex virus type 1 (HSV-1) is a common human pathogen (Arduino and Porter, 2008)

  • 25 μM, 166 active and 250 inactive compounds were defined (Table 2); Figure 1 shows the results of the Principal component analysis (PCA) of active or inactive compounds collected from ChEMBL, Dictionary of Natural Products (DNP), and the original papers using 267 descriptors

Read more

Summary

Introduction

According to a report from the World Health Organization, HSV-1 has been widespread and estimated to have infected 3.7 billion people globally (World Health Organization, 2020). The symptoms are usually benign; in some cases, severe conditions may occur with the development of herpetic encephalitis (Bradshaw and Venkatesan, 2016). Standard therapeutic drugs such as acyclovir, penciclovir, and vidarabine are all based on the nucleobase structure. Long-term prophylaxis and treatment with acyclovir or other nucleobase drugs has been reported to result in the development of resistance Searching for new anti-HSV-1 compounds with other structural characteristics is essential

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call