Abstract

Many combinatorial generating functions can be expressed as combinations of symmetric functions, or extracted as sub-series and specializations from such combinations. Gessel has outlined a large class of symmetric functions for which the resulting generating functions are D-finite. We extend Gessel's work by providing algorithms that compute differential equations, these generating functions satisfy in the case they are given as a scalar product of symmetric functions in Gessel's class. Examples of applications to k-regular graphs and Young tableaux with repeated entries are given. Asymptotic estimates are a natural application of our method, which we illustrate on the same model of Young tableaux. We also derive a seemingly new formula for the Kronecker product of the sum of Schur functions with itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.