Abstract

We present a Riemannian formalism for effective diffusion of biomolecules in collective variable spaces that provides a robust framework for conformational free energy calculation methods. Unlike their Euclidean counterparts, the Riemannian potential of mean force (PMF) and minimum free energy path (MFEP) are invariant under coordinate transformations. The presented formalism can be readily employed to modify the collective variable based enhanced sampling techniques, such as umbrella sampling (US) commonly used in biomolecular simulations, to take into account the role of intrinsic geometry of collective variable space. Although our model is mathematically equivalent to a Euclidean diffusion with a position-dependent diffusion tensor, the Riemannian formulation provides a more convenient framework for free energy calculation methods and path-finding algorithms aimed at characterizing the effective conformational dynamics of biomolecules. A simple three-dimensional toy model and a pentapeptide (met-enkephalin) simulated in an explicit solvent environment are used to illustrate the workings of the formalism and its implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.