Abstract

Inspired by exhumed subduction shear zones that commonly exhibit block-in-matrix characteristics (mélanges), we create synthetic models with different proportions of strong clasts within a weak matrix and compare them to natural mélange outcrops. Using 2D Finite Element visco-plastic numerical simulations in simple shear kinematic conditions, we determine the effective rheological parameters of such a two-phase medium, comprising blocks of basalt embedded within a wet quartzitic matrix. We treat our models and their structures as scale-independent and self-similar and upscale published field geometries to km-scale models, compatible with large-scale far-field observations. Like in the laboratory deformation experiments, we vary confining pressures, temperatures and strain rates to evaluate effective rheological estimates for a natural subduction interface. As expected, the block-in-matrix ratio affects deformation and strain localization, with the effective dislocation creep parameters (A, n, and Q) varying between the values of the strong and the weak phase, in cases where both materials deform by viscous creep. At conditions where the blocks are frictional and the matrix viscous, the mélange deforms effectively by dislocation creep but the locally frictional deformation of the blocks leads to higher stresses. This results in an effective value of the stress exponent, n, greater than that of both pure phases, as well as an effective rate-dependent viscosity lower than that of the weak phase. In combination with an appropriate evolution law for the block concentration of a mélange, our effective rheology parameters may be used in large scale geodynamic models as a proxy for a heterogeneous subduction interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.