Abstract
The goal of this paper is to study the geometry of cusped complex hyperbolic manifolds through their compactifications. We characterize toroidal compactifications with non-nef canonical divisor. We derive effective very ampleness results for toroidal compactifications of finite volume complex hyperbolic manifolds. We estimate the number of ends of such manifolds in terms of their volume. We give effective bounds on the number of complex hyperbolic manifolds with given upper bounds on the volume. Moreover, we give two sided bounds on their Picard numbers in terms of the volume and the number of cusps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.