Abstract
Herein, we report a bacteria-based strategy as an efficient, reasonable, benign, and promising methodology for remediating heavy metals fed waterbodies. The contemporary study deals with isolating, screening, and characterizing heavy metal resistive bacteria from metal-rich sites. The transcriptome analysis reveals the identity of the isolated species as Bacillus pumilus and Bacillus cereus. Batch studies put forth the bioremoval results in designed conditions of different pH, concentration, dose, and time. The mechanistic actions are drawn using complementary techniques such as Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The theory of surface adsorption of lead (Pb(II)) and nickel (Ni(II)) is further fostered by the application of adsorption isotherms. The conducted studies establish the bacterial morphological stratagems and multifarious biochemical approaches for countering metallic ions of Pb(II) and Ni(II). The exhibition of significant removal results by the isolated bacterial strains in simulated water samples with remarkable proliferation rates has opened up its favorability for industrial platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.