Abstract

In this study, the removal of fosthiazate in an aqueous solution using zero valent iron (ZVI) and the related removal reaction mechanism were investigated. The results indicate that the dissipation of fosthiazate adheres to a pseudo-first order reaction law. The apparent rate constant of fosthiazate removal could be improved by increasing the ZVI dosage, control temperature and initial pH. The observed pseudo-first-order degradation rate constants (Kobs) of fosthiazate removal using ZVI were varied in the different electrolyte solutions, and were determined as follows: Kobs (MgSO4) < Kobs (KCl) < Kobs (Control) <Kobs (NaCl) < Kobs (CaCl2) < Kobs (NaNO3) < Kobs (Na2SO4). In addition, the effects of Fe2+ and Fe3+ ions on the fosthiazate removal were also investigated, and the fosthiazate removal efficiencies were measured as 1.3% and 5.7% with Fe2+ and Fe3+, respectively. The characterizations of ZVI before/after the reaction were employed to gain insight into the reaction mechanism. Finally, the main degradation products were investigated by means of an Agilent 1100 LC/MSD Ion Trap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.