Abstract

Wastewater treatment is indispensable as wastewater can lead to adverse health effects and deteriorate the quality of life on earth. Photocatalysis is a facile methodology to address this issue. In this study, nanocomposites (NCs) of manganese oxide (Mn3O4) and nickel oxide (NiO) were synthesized in different weight ratios via the solid-state reaction route. Structural properties, optical properties, surface morphology, and functional group analysis of the synthesized nanomaterials were conducted using X-ray diffraction (XRD), UV– Vis spectroscopy, scanning electron microscopy (SEM) along with energy-dispersive X-ray (EDX) analysis, and Fourier-transform infrared (FTIR) spectroscopy, respectively. The bandgap of the nanocomposite decreases significantly from 2.35 eV for the Mn3O4 NPs to 1.65 eV for the Mn3O4/NiO nanocomposite (NC). Moreover, adsorption studies followed by the photocatalytic performance of the Mn3O4/NiO NCs were evaluated to determine the removal of methylene blue (MB) dye from wastewater. The photocatalytic performance of the nanocomposite enhances as the ratio of Mn3O4 in the composite increases from one weight percentage to three weight percentage. The photocatalytic degradation efficiency was calculated to be 95%. The results show that the synthesized NCs could play an important role in photocatalytic wastewater purification and environmental remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call