Abstract

With the rapid development in nanotechnology, the preparation of novel self-assembled nanoscale composite materials and their numerous environmental applications have become a promising area of research among the environmental scientists. In view of above, the present study aims at fabrication of a mesoporous nanoscale material of calcium ferrite-zirconium oxide-magnetic nanocomposite (CF-ZrO-MNC) to explore its application in adsorption-driven remediation process of tetracycline (TC). The characterisation study of the so-prepared CF-ZrO-MNC has revealed the presence of 0.1213 cc/g of mesoporous volume with a specific surface area of 95.32 m2/g. A comparative study performed between CF-ZrO-MNC, CaFe2O4 and ZrO2 nanoparticles has proven the superior adsorption capability of CF-ZrO-MNC for TC over the pure phases of parent CaFe2O4 and ZrO2 nanoparticles. The optimisation of TC adsorption process was performed by response surface methodology, which has revealed that 98.14% of TC removal can be obtained within 60 min of contact time using 4.0 g/L of CF-ZrO-MNC dose with 40.0 mg/L of TC concentration at solution pH 6.0. The kinetic and isotherm studies have presented pseudo-second-order kinetic and Freundlich isotherm model as the best-fitted models, respectively. The results of Langmuir isotherm model fitting indicated that CF-ZrO-MNC poses 92.59 mg/g of maximum TC adsorption capacity which has been proven to be highly effective as compared to previously reported adsorbents for the remediation of TC from aqueous media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call