Abstract
Preparation of hydrogels that possess an effective antibiotic release profile and better mechanical properties compared to the traditionally used collagen hydrogels has the potential to minimize post-surgical infections and support wound healing. Toward this goal, we prepared elastin-like polypeptide (ELP)-collagen composite hydrogels that displayed a significantly higher elastic modulus compared to the collagen hydrogels. We then characterized the release behavior of the collagen and ELP-collagen hydrogels loaded with varying dosages (1-5% w/w) of a commonly used broad spectrum antibiotic, doxycycline hyclate. Both collagen and ELP-collagen hydrogels showed a gradual time dependent doxycycline release over a period of 5 days. The ELP-collagen hydrogels, in general, showed a slower release of the doxycycline compared to the collagen hydrogels. The released doxycycline was found to be effective against four bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Streptococcus sanguinis, and methicillin-resistant Staphylococcus aureus) in a dose dependent manner. Combined with their improved mechanical properties, the gradual and effective drug release from the biocompatible ELP-collagen hydrogels shown here may be beneficial for drug delivery and tissue engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.