Abstract

Bacterial biofilms can initiate chronic infections that become difficult to eradicate. There is an unmet need for effective therapeutic strategies that control and inhibit the growth of these biofilms. Herein, light sensitive mesoporous silica nanoparticles (MSNs) with photothermal (PTT) and antimicrobial combined capabilities have been developed. These nanosystems have high therapeutic potential to affect the bacterial biofilm architecture and subsequently inhibit its growth. Nucleation of gold nanorods followed by the growth of a silica shell leads to a [email protected] design ([email protected]) with PTT properties. Incorporation of nitrosothiol groups (-SNO) with a heat liable linker, enables an enhanced nitric oxide release upon photothermal stimulation with near infrared radiation. Further loading of an antimicrobial molecule such as the levofloxacin (LEVO) antibiotic creates a unique nanoassembly with potential therapeutic efficacy against Staphylococcus aureus bacterial biofilms. A dispersion rate of the bacterial biofilm was evident when light stimuli is applied because impregnation of the nitrosothiol functionalized nanosystem with the antibiotic LEVO led to ca. 30% reduction but its illumination with near infrared (NIR) irradiation showed a biofilm reduction of ca. 90%, indicating that localized antimicrobial exposure and PTT improves the therapeutic efficacy. These findings envision the conception of near-infrared-activated nanoparticle carriers capable of combined therapy upon NIR irradiation, which enables photothermal therapy, together with the release of levofloxacin and nitric oxide to disrupt the integrity of bacterial biofilms and achieve a potent antimicrobial therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.