Abstract
The rapid lifetime imaging of upconversion photoluminescence is becoming increasingly popular in biosensing, anticounterfeiting, optical thermometry, and multiplex imaging. However, existing Rapid Lifetime Determination (RLD) techniques are limited in their ability to integrate contiguous, overlapping, and discrete windows into a single measurement, hindering accurate fluorescence lifetime retrieval. This study introduces a new data acquisition method using three adjustable gates in a single measurement to enhance resolution. We apply this method in rapid upconversion fluorescence lifetime imaging to visualize capillary networks and map pH levels based on intensity and lifetime differences in mouse brain vasculature. By enhancing brightness using NaYbF4@NaYF4,Er,Tm@NaYF4 nanoparticles, we achieve effective brain imaging. Monte Carlo simulations demonstrate a relative standard deviation of less than 0.4% for fluorescence durations spanning from 1 to 20 ns. This method provides a fast, high-contrast solution for multiplex brain imaging, addressing the limitations of slow data collection and poor accuracy in existing RLD techniques.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.