Abstract

ABSTRACTWater-soluble β-1,3-glucan (w-glucan) prepared from curdlan is reported to possess various bioactive and medicinal properties. To develop an efficient and cost-effective microbial fermentation method for the direct production of w-glucan, a coupled fermentation system of Agrobacterium sp. and Trichoderma harzianum (CFS-AT) was established. The effects of Tween-80, glucose flow rate, and the use of a dissolved oxygen (DO) control strategy on w-glucan production were assessed. The addition of 10 g L−1 Tween-80 to the CFS-AT enhanced w-glucan production, presumably by loosening the curdlan ultrastructure and increasing the efficiency of curdlan hydrolysis. A two-stage glucose and DO control strategy was optimal for w-glucan production. At the T. harzianum cell growth stage, the optimal glucose flow rate and agitation speed were 2.0 g L−1 hr−1 and 600 rpm, respectively, and at the w-glucan production stage, they were 0.5 g L−1 hr−1 and 400 rpm, respectively. W-glucan production reached 17.31 g L−1, with a degree of polymerization of 19–25. Furthermore, w-glucan at high concentrations exhibited anti-tumor activity against MCF-7, HepG2, and Hela cancer cells in vitro. This study provides a novel, cost-effective, eco-friendly, and efficient microbial fermentation method for the direct production of biologically active w-glucan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call