Abstract
In this study, sugarcane bagasse (SB) was pretreated with combination pretreatment (e.g., sequential KOH extraction and ionic liquid soaking, sequential KOH extraction and Fenton soaking, or sequential KOH extraction and glycerol soaking). After the enzymatic hydrolysis of pretreated SBs, it was found that all these three concentrated hydrolyzates could be used for the asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-CHBE]. Compared with glucose, arabinose and cellobiose couldn’t promote the initial reaction rate, and xylose could increase the intracellular NADH content. Moreover, it was the first report that hydrolyzates could be used for the effective biosynthesis of (S)-CHBE (∼500g/L; 98.0% yield) from 3000 COBE by whole cells of Escherichia coli CCZU-K14 in the presence of β-CD (0.4mol β-CD/mol COBE), l-glutamine (200mM) and glycine (500mM). In conclusion, it is a new alternative to utilize bioresource for the synthesis of key chiral intermediate (S)-CHBE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.