Abstract

ABSTRACTA planar three-link passive–active–active (PAA) underactuated mechanical system is a kind of nonlinear system with a passive first joint. The position–posture control objective for the planar PAA system is to move the end effector from an initial position to a target position with a specified posture. This paper presents a switch control strategy to solve the position–posture control problem. First, a Lyapunov function is constructed based on the system control objective. Then, a set of main controllers based on this Lyapunov function are designed. However, the main controllers may make the system stabilise at one of equilibrium points, which is not the system target position. To avoid the above phenomenon, when the system is about to stabilise at one non-target position, the main controllers are switched to a set of sub-controllers, which are designed according to another Lyapunov function constructed based on the control objective of the active links. When the sub-controllers are running, their design parameters are adjusted to try to keep the derivative of the first Lyapunov function being a non-positive function. Therefore, the switch control between the main controllers and the sub-controllers realises the position–posture control objective of the system. Finally, the simulation results demonstrate the effectiveness of the switch control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call