Abstract

Despite its significance in evolutionary and conservation biology, few estimates of effective population size (N(e)) are available in plant species. Self-fertilization is expected to affect N(e), through both its effect on homozygosity and population dynamics. Here, we estimated N(e) using temporal variation in allele frequencies for two contrasted populations of the selfing annual Medicago truncatula: a large and continuous population and a subdivided population. Estimated N(e) values were around 5-10% of the population census size suggesting that other factors than selfing must contribute to variation in allele frequencies. Further comparisons between monolocus allelic variation and changes in the multilocus genotypic composition of the populations show that the local dynamics of inbred lines can play an important role in the fluctuations of allele frequencies. Finally, comparing N(e) estimates and levels of genetic variation suggest that H(e) is a poor estimator of the contemporaneous variance effective population size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.