Abstract

In this Part 1 of a two-part series, the theoretical modeling and optimization are presented. More specifically, the effect of attachment location on the dynamics of a flexible beam system is studied using a theoretical model. Typically, passive/active resonators for vibration suppression of flexible systems are uniaxial and can only affect structure response in the direction of the applied force. The application of piezoelectric bender actuators as active resonators may prove to be advantageous over typical, uniaxial actuators as they can dynamically apply both a localized moment and translational force to the base structure attachment point. Assuming unit impulse force disturbance, potential actuator/sensor performance for the secondary beam can be quantified by looking at fractional root-mean-square (RMS) strain energy in the actuator relative to the total system, and normalized RMS strain energy in the actuator over a frequency band of interest with respect to both disturbance force and actuator beam mount locations. Similarly, by energizing the actuator beam piezoelectric surface with a unit impulse, one can observe RMS base beam tip velocity as a function of actuator beam position. Through such analyses, one can balance both sensor/actuator performance and make conclusions about optimally mounting the actuator beam sensor/actuator. Accounting for both sensing and actuation requirements, the actuator beam should be mounted in the following nondimensionalized region: 0.4≤e≤0.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.