Abstract

In this paper we continue the investigation of the effective transport parameters of a digitized sample of Fontainebleau sandstone and three reconstruction models discussed previously in Biswal et. al., Physica A 273, 452 (1999). The effective transport parameters are computed directly by solving the disordered Laplace equation via a finite-volume method. We find that the transport properties of two stochastic models differ significantly from the real sandstone. Moreover, the effective transport parameters are predicted by employing local porosity theory and various traditional mixing-laws (such as effective medium approximation or Maxwell-Garnet theory). The prediction of local porosity theory is in good agreement with the exact result.KeywordsPorous materialseffective material parametersself-consistent methodrnicrostructure

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.