Abstract

The scattering process induced in blood by a collimated laser beam is theoretically investigated. An individual red blood cell (RBC) has a scattering phase function strongly peaked in the forward direction. For far-field experiments, the small scattering volumes can be considered as "macroscopic particles" characterized by an effective scattering phase function. Using the single-cell phase function as "input data" the angular distribution of light scattered at small angles by the whole scattering volume, containing RBCs in suspension, is calculated analytically. The angular dispersion of the light scattered by blood can be approximately described by the same formula used to characterize the light scattered by a single cell but with an effective, hematocrit-dependent anisotropy parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call