Abstract

Using the well-established technique of geoacoustic inversion, one can estimate a set of acoustic sea-bed parameters from sonar array data. Simultaneously, one can search for geometric parameters such as range, water depth, and hydrophone depth. When the technique is applied in a range-dependent environment, there is a potentially much larger set of parameters to match, unless one has perfect knowledge of the bathymetry. From the point of view of optimization, one needs to handle uncertainties in bathymetry without hugely increasing the amount of computation. A simple time-domain view (which is shown to be equivalent to the adiabatic approximation) suggests that it is sufficient to use a range-independent model with an empirical "effective" depth even when the bottom is not flat. In fact, there is a set of effective environments that will suffice; one can choose whichever is the most convenient. The success of this concept is demonstrated with some test cases from a recent Geoacoustic Inversion Techniques Workshop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call