Abstract

We present an analysis of effective operators in the shell model with up to three-body interactions in the Hamiltonian and two-body terms in electromagnetic transition operators when the nucleons are either neutrons or protons occupying a single-j orbital. We first show that evidence for an effective three-body interaction exists in the N = 50 isotones and in the lead isotopes but that the separate components of such interaction are difficult to obtain empirically. We then determine higher-order terms on more microscopic grounds. The starting point is a realistic two-body interaction in a large shell-model space together with a standard one-body transition operator, which, after restriction to the dominant orbital and with use of stationary perturbation theory, are transformed into effective versions with higher-order terms. An application is presented for the lead isotopes with neutrons in the orbital.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call