Abstract

In this paper we present a method for deriving effective one-dimensional models based on the matrix product state formalism. It exploits translational invariance to work directly in the thermodynamic limit. We show, how a representation of the creation operator of single quasi-particles in both real and momentum space can be extracted from the dispersion calculation. The method is tested for the analytically solvable Ising model in a transverse magnetic field. Properties of the matrix product representation of the creation operator are discussed and validated by calculating the one-particle contribution to the spectral weight. Results are also given for the ground state energy and the dispersion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.