Abstract

We determine the general local-in-time effective-one-body (EOB) Hamiltonian for massless Scalar-Tensor (ST) theories at third post-Newtonian (PN) order. Starting from the Lagrangian derived in [Phys. Rev. D 99, 044047 (2019)], we map it to the corresponding ordinary Hamiltonian describing the two-body interaction in ST theories at 3PN level. Using a canonical transformation, we then map this onto an EOB Hamiltonian so as to determine the ST corrections to the 3PN-accurate EOB potentials $(A,B,Q_e)$ at 3PN. We then focus on circular orbits and compare the effect of the newly computed 3PN terms, also completed with finite-size and nonlocal-in-time contributions, on predictions for the frequency at the innermost stable circular orbit. Our results will be useful to build high-accuracy waveform models in ST theory, which could be used to perform precise tests against General Relativity using gravitational wave data from coalescing compact binaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call