Abstract

Several effective numerical methods for solving the elasto-plastic contact problems with friction are presented. First, a direct substitution method is employed to impose the contact constraint conditions on condensed finite element equations, thus resulting in a reduction by half in the dimension of final governing equations. Second, an algorithm composed of contact condition probes and elasto-plastic iterations is utilized to solve the governing equation, which distinguishes two kinds of nonlinearities, and makes the solution unique. In addition, Positive-Negative Sequence Modification Method is used to condense the finite element equations of each substructure and an analytical integration is introduced to determine the elasto-plastic status after each time step or each iteration, hence the computational efficiency is enhanced to a great extent. Finally, several test and practical examples are presented showing the validity and versatility of these methods and algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.