Abstract

Many (>40) nonlocal spin valves on the same substrate have been characterized at 6K and 295K by using a probe station. Low-resistance oxide junctions (0.2–0.8Ω) are used to inject spin current into mesoscopic Cu channels. Spin signals exceeding 10mΩ at 6K have been consistently observed, indicating efficient spin injection and detection. However, complex switching behavior and possible variations between devices pose a challenge to using a standard fitting method to quantify the spin signals. Two methods are used for quantitative analysis. The range of the effective spin polarizations can be estimated by assuming a reasonable range for the Cu spin diffusion lengths. A nonlocal spin polarization is introduced to evaluate the spin current in the Cu channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.