Abstract

This study investigates the effect of physicochemical conditions on the partial nitritation and anammox treatment by immobilized ammonia oxidizers under ammonium-deplete conditions. The impact of oxygen and temperature was studied by measuring the activity of immobilized aerobic and anaerobic ammonia-oxidizing organisms (Ammonia-oxidizing bacteria (AOB) and archaea (AOA), and Anammox bacteria) embedded in polyvinyl alcohol – sodium alginate (PVA-SA) beads and in thin layer poly-ethylene glycol hydrogels. Beads and flat hydrogels were incubated in a fluidized bed reactor (FBR) and in two flow cells, respectively. Both systems were fed with synthetic wastewater (15 mg N–NH4+/L) at different temperatures (20 °C and/or 30 °C) and different dissolved oxygen (DO) concentrations (0.1, 0.3, 0.5 and/or 1 mg/L) over 152 and 207 days, respectively. The FBR system had a maximum removal rate of 1.7 g-N/m3/d at 0.1 mg O2/L, corresponding to 80% removal efficiency, while a high aerobic ammonia-oxidizing activity but a partial oxygen inhibition of Anammox bacteria were observed at higher DO concentrations. In both flow cells, nitrogen removal efficiency was highest (80%) at 30 °C and 1 mg O2/L while removal was less favorable at lower DO and lower temperature. Our results indicate a potential use of hydrogel beads for an energy efficient technology with reduced aeration demand for treating low ammonia wastewater, while layered hydrogels are a possible first step for biological treatments of wastewater using tangential flow. In addition, we provide blueprint drawings of the flow cells, which may be used to 3D-print the apparatus for other applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call