Abstract

In this article we revisit the classical neuroscience paradigm of Hebbian learning. We find that it is difficult to achieve effective associative memory storage by Hebbian synaptic learning, since it requires network-level information at the synaptic level or sparse coding level. Effective learning can yet be achieved even with nonsparse patterns by a neuronal process that maintains a zero sum of the incoming synaptic efficacies. This weight correction improves the memory capacity of associative networks from an essentially bounded one to a memory capacity that scales linearly with network size. It also enables the effective storage of patterns with multiple levels of activity within a single network. Such neuronal weight correction can be successfully carried out by activity-dependent homeostasis of the neuron's synaptic efficacies, which was recently observed in cortical tissue. Thus, our findings suggest that associative learning by Hebbian synaptic learning should be accompanied by continuous remodeling of neuronally driven regulatory processes in the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.