Abstract

ABSTRACT Gas-poor galaxies can be modelled as composite collisionless stellar systems, with a dark matter halo and one or more stellar components, representing different stellar populations. The dynamical evolution of such composite systems is often studied with numerical N-body simulations, whose initial conditions typically require realizations with particles of stationary galaxy models. We present a novel method to conceive these N-body realizations, which allows one to exploit at best a collisionless N-body simulation that follows their evolution. The method is based on the use of an effective N-body model of a composite system, which is in fact realized as a one-component system of particles that is interpreted a posteriori as a multicomponent system, by assigning in post-processing fractions of each particle’s mass to different components. Examples of astrophysical applications are N-body simulations that aim to reproduce the observed properties of interacting galaxies, satellite galaxies, and stellar streams. As a case study we apply our method to an N-body simulation of tidal stripping of a two-component (dark matter and stars) satellite dwarf galaxy orbiting in the gravitational potential of the Milky Way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.