Abstract
AbstractAccurate and effective container throughput forecasting plays an essential role in economic dispatch and port operations, especially in the complex and uncertain context of the global Covid‐19 pandemic. In light of this, this research proposes an effective multi‐step ahead forecasting model called EWT‐TCN‐KMSE. Specifically, we initially use the empirical wavelet transform (EWT) to decompose the original container throughput series into multiple components with varying frequencies. Subsequently, the state‐of‐the‐art temporal convolutional network is utilized to predict the decomposed components individually, during which an improved loss function that combines mean square error (MSE) and kernel trick is employed. Eventually, the deduced prediction results can be obtained by integrating the predicted values of each component. In particular, this research introduces the MIMO (multi‐input and multi‐output) strategy to conduct multi‐step ahead container throughput forecasting. Based on the experiments in Shanghai port and Ningbo‐Zhoushan port, it can be found that the proposed model shows its superiority over benchmark models in terms of accuracy, stability, and significance in container throughput forecasting. Therefore, our proposed model can assist port operators in their daily management and decision making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.