Abstract

We propose a new approach to model ground penetrating radar signals that propagate through a homogeneous and isotropic medium, and are scattered at thin planar fractures of arbitrary dip, azimuth, thickness and material filling. We use analytical expressions for the Maxwell equations in a homogeneous space to describe the propagation of the signal in the rock matrix, and account for frequency-dependent dispersion and attenuation through the empirical Jonscher formulation. We discretize fractures into elements that are linearly polarized by the incoming electric field that arrives from the source to each element, locally, as a plane wave. To model the effective source wavelet we use a generalized Gamma distribution to define the antenna dipole moment. We combine microscopic and macroscopic Maxwell's equations to derive an analytic expression for the response of each element, which describes the full electric dipole radiation patterns along with effective reflection coefficients of thin layers. Our results compare favorably with finite-difference time-domain modeling in the case of constant electrical parameters of the rock-matrix and fracture filling. Compared with traditional finite-difference time-domain modeling, the proposed approach is faster and more flexible in terms of fracture orientations. A comparison with published laboratory results suggests that the modeling approach can reproduce the main characteristics of the reflected wavelet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call